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1 Introduction

Rapid developments in optical materials and devices in the last two decades

have made optical sensing a very attractive sensing technique in control en-

gineering. Compared with the traditional electronic and electro-mechaaaical

sensors, the optical sensing and related information processing has the fol-

lowing advantages:

1. Interconnections: Optical connections are-much easier to make than

electronic ones, because optical signals do not affect each other if their

paths cross.

o Immunity to electromagnetic interference (EMI): Electric conductors,

unlike light beams, when placed too close to each other have EMI

upon each other, because the signals they carry generate magnetic fields

which can induce currents in nearby conductors. For example, a prime

attraction of optical fibre sensors in aerospace is their immunity to

EMI, including some electronic countermeasures.

3. Optical measurements are made without making contact, at high speed

and with high precision.

4. Reduced size and weight of devices, higher processing capacity for low

electrical power consumption, are attractive factors to space industry.



Although optical fibre sensors have been widely used in industry, their

applications are limited to the measurements of the foUowing field variations:

1. strain distribution in large structures such as bridges, dams, and pres-

sure vessels;

2. temperature distributions in equipment such as power transformers,

electrical generators, boilers and high-voltage cables;

3. electric and magnetic field anomalies in electrical networks.

In this report a real time holographic sensing technique is introduced and

its advantages are investigated from the filtering and control point of view.

The feature of holographic sensing is its capability to make distributed mea-

surements of position and velocity of moving objects, such as a vibrating

flexible space structure. This study is based upon the distributed parameter

models of linear time-invariant systems, particularly including the linear os-

cillator equations describing the vibration of large flexible space structures.

The general conclusion is that application of optical distributed sensors brings

gain in the situation where Kalman filtering is necessary for state estimation.

In this case, both transient and steady state filtering error covariance become

smaller. This in turn results in smaller cost in the LQG problem.

Instead of measuring field variations like optical fibre sensors, holographic

sensors are used to measure the position and velocity of objects in mbtion.

Rate measurement is made possible by latching two holographic memory

devices, where the images are retained, at different times.

The organization of this report is as follows:

In Section 2, the princple of a real time holographic sensing technique--

Degenerate Four Wave Mixing (DFWM)--is reviewed briefly.

In Section 3, we first study noise disturbances in holographic sensing

and propose white noise as a reasonable formulation of observation noise in

holographic sensing.



Then the results on the gains of optical distributed sensing are stated

and proved. Finally, by studying the active damping problem of flexible

structures, we show that it is important to use distributed sensing in order

to reduce the unwanted energy input caused by filtering errors.

Conclusions are in Section 4.

2 The Principles of item Time Holography

The principle of holography

(1) Recording of hologram. For simplicity, let us consider only the one dimen-

sional case. The arrangement of hologram and coordinate is as illustrated in

Figure 1.

Obviously, when Ixl<<Izd, i= 1,2, we have

r(z,z;) - (z_+ z2)1/2 - Izd+ _ Iz_--/+O _ .

The reference wave W,_i(x , z), is a plane wave and is coherent with the

object wave Wobj(x, z). In phasor form, we have

Wr_l(x,z) = Kexp [ik (xcos (_ - 8) + ycos _ +zcosO)]

= Kexp[ik(xsin0+zcos0)]

where k = 2r/A is wave number and A is wave length.

For simplicity, we consider an object consisting of only two poitits, with

spacing Izl - z2l. Then the object beam is the inteference of two spherical

waves produced by the two points. Therefore the object wave in phasor form

is given by

= a ,(_,-------y+ a _(_,_)

,._ ae_kl'_feik_:2/21z_l q_ ae_kl'2leikX2/21z_l
I_11 Iz21

= aAleik=2/(91_l) + aA2e°'_2/(21_21)



X

Two point object

(two spherical waves):

e_k'(c'z)and e_h_"2)
rC_,,l) r(_,,2)

Hologram

R_eference w ave (a coherent plane wave): K e_k(2 co. 0+ =.i. 0)

Figure 1: The Schematic for Recording a Hologram
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for Ixl<<Iz21.
If we assume the exposure E is in the linear range of the transmittance-exposure

relation [3], then what is recorded on the hologram (x-axis) is the intensity of the

interference pattern between the object wave Wobj(z, z) and the reference wave

Wr_1(z,z) at z = 0.

I(z) = IWro.,(z,o)+ w,,_Az,o)?

= IKe _k':'i"° + aAle _k_l(21*_l) + aA2eik=21(21_l) l2

"-- K 2 "4-aK elk=¢m° (,Al e-ik_ l(21z' l) -4- ,A2e -ik_a l(21*21))

+aKe-ik':'a_° ( Al e ik_ /(21*ll) + A2e +k=2/(21*21))

+OCa _) (1)

for K _ a.

(2)Reconstruction of the recorded holographic image. Those two cross product

terms in (1) play crucial role in holography. After developing the film, put it in the

reconstruction system as illustrated in Figure 2.

Let us consider the contribution of the first cross product term. The spatial

domain solution of the diffraction problem is expressed in the Fresnel-Kirchhoff

integral as follows: If a plane wave of amplitude al, traveling in the direction of the

positive z axis, is incident on an object with amplitude transmittance t(xl, Yl) in

the plane normal to the z axis at z = O, the light complex amplitude a2(x2, Y2, d)

in the plane z = d is

a2(z2,v2, d) = _-ff t(zl, Vl) cos 0

exp{-i(2_r/X)[d a + (x2 - xl) 2 + (Y2 - Yl)2]l/2} dxldy 1X,
[d_+ (z2- x,)2+ (w- v,)21'/2

The geometry is illustrated in Figure 3. The angle 0 is formed by the positive z axis

and the straight line connecting the points (xl, yl,0) and (x2, y2,d). Cos0 is called

6
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Figure 2: The Schematic for Reconstructing the Image



the obliquity factor, which, in what follows, is considered to be close to 1 since the

angle 0 is generally close to 0 when d is large.

By Fresnel-Kirchhoff integral [3, p106], and neglecting the multiplicative con-

stant, we obtain the diffraction pattern of the read beam upon the recorded holo-

gram as

.q(_) = f eik=,ino(fiqe-ik_/(21,,l) + fi.2e-i*_/(=l,,I))eik_(¢-=)'+ ,'dx

= eik(,+¢=/(=,)) f(51e-ik_/('_tzal) + fi,=e -+k_/(=l'=l))

x exp[ikz=/(2z)- ikzlz((- zsinO)]dz

Therefore, at position z = [za[, the first term in the above integral evaluates

to 6(_- Izllsin0), while the second term becomes S(_ -Iz_lsin0) at z = Iz=l . In

other words, the two point object is reconstructed at positions (Iz, l, lz, l sinO) and

(Iz21,Iz21sin 0).

A Real-time Holography Technology - DFWM

In present days, real-time holography can be accomplished in photorefractive

materials, a technique called degenerate four wave mizing (DFWM) [4]. Photore-

fractive materials include the following type of crystals: lithium niobate (LiNbO3),

potassium niobate (KNbO3), barium titanate (BaTiO3), strontium barium niobate

(SBN) and bismuth silicon oxide (Bi_2SiO_0). Photorefractive crystals provide a

unique way of recording light intensity which allows multiple beams to be mixed.

To understand the operation of DFWM, let us first recall that the refractive

index n, or index of refraction, of a medium is defined to be c/v, where c is the speed

of light in free space and v the speed of light in the medium [7]. For photorefractive

crystals, their refractive index is nonlinearly dependent upon the local intensity I

of light incident upon it. The total refractive index is given by [9]

n = no + n2I p (2)

8
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where no, n2,p are constants and it is common that p :fi 1.

When light is incident upon a photorefractive crystal, the refractive index

within the crystal changes with the local light intensity, by (2). In this way,

the distribution of light intensity over the volume of the crystal is recorded

as a change in refractive index.

When performing DFWM using photorefractive crystal, as in conven-

tional holography, both the object beam and the reference beam, which are

coherent, are incident upon a photorefra_tive crystal. A1 the same time, a

third beam, called read beam, is also incident upon the crystal, see Fig-

ure 4. The interference pattern generated by the interference of these three

beams produces a spatially varying refractive index within the crystal. The

variation in refractive index within the crystal is similar to a recorded holo-

gram, and causes diffraction of the beams. If the read beam is identical but

phase conjugate to the reference beam, then the diffracted beam is the phase

conjuate of the object beam.

DFWM in a photorefractive crystal is similar to conventional holography

where the hologram is illuminated with the phase conjugate of the reference

beam, producing a phase conjugate of the object. The difference between

DFWM and conventional holography is that in the DFWM process, the

hologram is made and read simultaneously, avoiding the chemical process of

developing the hologram. Because of the fast response times of man_, pho,

torefractive crystals [5], the holography can be made real-time using DFWM

in a photorefractive crystal.

Currently, there are two major factors that limit widespread application

of photorefractive crystals:

1. Some of the most promising crystals (e.g., BaTi03, SBN and KNb03)

are not widely available in large samples with high optical quality.

10



2. The crystals that are available do not perform well enough in all re-

spects. For instance, in order to demonstrate high speed, low write

energy, long memory or large gain, it is necessary to use several differ-

ent types of materials. Reference [11] gives the performance evaluations

of some photorefractive crystals.

3 Results

Noise disturbances in holographic sensing

Noise disturbances axe always present in the processes of making a holo-

gram and then reading the hologram. Therefore we have to consider sensor

noise in optical holographic sensing. Generally, the noise is attributed the

following sources:

1. Random scattering of both signal and reference beams during exposure

due to the granularity of the recording material.

2. Random scattering of the reading beam and the reconstructed wave

due to the granularity of the material of the hologram.

3. Spatial modulations of the reference and reading beams.

4. Inhomogeneities and surface deformations of the recording material.

5. Nonlinear recording of the signal wave.

Sources 1, 2 and 3 are usually not significant except in certain special

cases such as making multiple recording of many holograms in the same

material, or using spatially modulated reference beams. Source 4 is related

to the preparation of the recording material. Next we study the adverse

effects of source 5, the nonlinearity in holographic recording.

11
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Reference Beam
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Figure 4: The scheme of Degenerate Four Wave Mixing (DFWM)
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The traasmitta_ce t of a hologram made is a function of the exposure E,

which is defined by

E = k_r_I

where kl > 0 is a constant, T¢ is the exposure time. In the previous analysis

we have assumed that the relation between t and E is linear. However,

t - E curve is always nonlinear to some degree. The following form of cubic

approximation

t = Co + clE + c2E 2 + c3E 3 (3)

fits experimental curves quite well over a considerable range for plane ab-

sorption hologram.

For the usuM range of exposure, nonlinear effects produced by the quadratic

term are the most important. Its nonlinear effects are particularly well illus-

trated for a two point object. If we adopt the reconstruction arrangement as

in Figure 5, then the wave at z = d (on the hologram) is given by

a = Wobj(x2,y2,d)

exp : ---_-ik_lx_+ (Y2 -- bl) 2 + d 2 ) + exp (-ik_/x_ + (Y2 -- b2)2 + d 2 )

,-_ exp[-ik/(2d)(x_ + y_ - 2y=b,)l + exp[-ik/(2d)(z] + y_ - 2y?b_)l

= ei¢ ', + e i¢2

For simplicity of analysis, let us assume that the reference wave is unmod-

ulated, i.e., rr* = constant. Then the quadratic term in the transmittance

of the recorded hologram is given by

c2E_= c,kb-:(l_+ _I_)_

13
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Figure 5: The generation of false images of a two point object by a nonlinearly

recorded hologram (h = ba - b2).
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2 2 *= c2k_r_ (aa + rr" + at" + a'r) 2

"- C2klTe [(aa°) 2 + + + +

+L(aa', ar', a'r)

where L(.,.,-) is a hnear function of its three variables.

When the nonlinearly recorded hologram is illuminated by the original reference

wave r, the fourth term in the above equation produces the following diffracted

wave front

r(2aa" ar °) = 21,-12(a2a")

= 21r12[e'_' ÷ e'_]2[e-'¢' -I- e-'_]

-- 21r12[3e '_1 ÷ 3e '_2 ÷ e _(2_'-_2) -t- e_(2_2-_`)]

= 61r12(e, ,+ + 2lrl2lexpC_ik/C2d)Cz]+ v_ - 2y_(b, ÷ h)))

+exp(-ik/(2d)(x] + y_- 2y2(b2 -- h))) ]

whereh=bl-b2>0.

It can be seen that the third term in the above represents a spherical wave

diverging from a false virtual image of a point source P3(0, bl ÷ h). And the fourth

term in the above represents a spherical wave diverging from another false vir-

tual image of a point source P4(0, b2 - h). Therefore, two false virtual images are

produced by the effect of nonlinearity in t - E relation.

The cubic nonlinearity term in (3) can be similarly analyzed and additional false

images are introduced in and around the true image.

Therefore, there are numerous sources of noise in holographic sensing and they

are in and around the true image. We propose the white noise formulation to

represent the observation noise.
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The gain of optical distributed sensing

Let us consider the following stochastic system

_:(t) = Az(t) + Bu(t) + Fw(t)

y(t) = C_(t) + C_(t)

where GG" = I, FG ° = 0 (noise independent), and B is Hilbert-Schmidt, and w(.)

is a Gaussian white noise process.

In the associated LQG problem, the cost functional is given by

J(u) = T_mcc{T foTTr.QE[x(t,w)x°(t,w)]Q'dt

1 T
fo Tr.W[u(t,w)u'(t,w)]dt} (4)

where Q is a Hilbert-Schmidt operator.

By [1], the optimal feedback control for the LQG problem is given by

u'(t) = -B'Pc_.(t)

where Pc satisfies the following SSRE

A'Pc + PeA + Q'Q - PcBB'Pc = 0 (5)

and _a(t) is defined by the asymptotic Kalman filter

_a(t) = (A - BB'Pc)_(t) + PIG'(y- _:o(t))

= (A- BB'Pc - PIC'C)&a(t) + PIC'g(t)

_°(o) = o

where P! solves the following SSRE

AP! + PIA" + FF" - PIC'CP! = 0 (6)

16



And the minimal final cost is given by

J(u') = Tr.QPIQ" + Tr.CPIPcPIC"

Su_cient conditions on the existence of Pc,

(A - P/C'C) are strongly stable

1. For our particular

(7)

P! such that (A- BB'Pc) and

(o,) (o)A= _ 0 ; 13= B

by [2], if (.4, B) is controllable and

IIQwll2<_MIIt3"wll2 w e _(vr_)x

and also (.4", Q') is controllable, then (5) has unique solution such that (.4 -

BB*79c) is strongly stable.

2. By [2], if (.4",C*) and (.4,.T') are controllable and

ll_wll __<MIIC_II_

then

lim 79_(t)= 79s (in strong sense);
_ ----* oo

and 79t satisfies (6) and is the unique solution such that both

(.4 - 79fC*C ) and (.4 - 79IC*C)* are strongly stable.

Zabczyk [12] obtained more demanding sufficient conditions which require the

exponential stabilizability of (A,B), (A,.T'), (.4",¢*), (.4*,Q*). Unfortunately all

these conditions are not satisfied in view of Gibson's result [6] and the fact that B

and Q are Hilbert-Schmidt.

17
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From the above well established results, we know that no matter what

kind of choice of the observation operator C we make, the optimal control

law is given by

¢(t) =

where 79c is independent of the observation operator. Therefore the gain

of distributed sensing will only happen in filtering, in the sense that 7)1 =

limt__.ooT)t(t) will be smaller. Furthermore, as a consequence of "better"

recovery of state information by Kalman filtering through distributed sensing,

the optimal feedback control should give a smaller final cost.

Next we first consider the following two SSR.E's in Kalman filtering.

AP + PA* + FF" - PC'CP - 0

APz q- PdA* + FF* - PdC_CdPd = 0

where C : H --* IR", Ca : H _ Ho are linear and bounded.

We are going to show

(8)

(9)

Proposition 1 Under the assumptions

there holds

provided that both P and Pa ezist.

ccjcd = cc'c (lO)

CC'>O (11)

Pd<P

Before the proof of the proposition, we notice that the assumption (10)

has the clear physical interpretation that the information yielded by the

18



observation operator C is just a subset of that of Cd.

Proof: Consider the following two LQR problems on the infinite horizon,

{ _(t) = A'xCt)+C'u(O (12)
x(0) = x

with cost functional

and

J(u; x) = fo °°

with cost functional

IIF'_(t)ll _ + II_,(t)ll]_. dt

k(t) = A'x(t)+C_u(t) (13)• (0) =

J_(_,;_) = IIF'x(Oll_+ II_,(OIILdr.

For P and Pd satisfying (8) and (9) respectively, we know that

[Px, x] = min S(u;x) (14)

[Pax, x] = min Jd(u;x). (15)
ueL2[(O,co),H.]

Next, in the second LQR problem (13) we perform optimization with

respect to only a special class of control.

u = CdC*(CC*)-lfi with

Since
C_

e L2[(0, oo), _"l.

= C_C_C'(CC')-Ia

= (cc_c_).(cc.)-_

= (cc.c).(cc.)-_

= C'_

19
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and

I1_11_,.= [cc_c.c'(cc')-'_,(cc')-'a]

= llall_

then the second LQR problem becomes

= A'x(t) + C]u(t) = A'x(t) + C'f_(t)

with cost functional

z,( c,c'( cc') -__;_) = Z °oiiF-x(t)ll 2 + IlCaC'(CC')-'_II_Hodt

-- ZoollF'z(t)ll2 + II_,(t)ll_dt

= J(_;x) (16)

Therefore, in the light of (14)-(16), we obtain

[p_x, _] = rain J_(_; • )
ueL2[(0,oo),X,l

< min Jd(C_C'_; z)
- r,e t)i(0,oo),r_]

= rnin J(fi;x)
_ t)[(0,oo),r_-]

= [px,_]

El

Remark: Notice that in the proof of Proposition 1, we only need the assumptions

(10) and (11), and C_ is not necessarily a distributed sensing operator. In addition,

the requirement that Range(C) = /R" - a finite dimensional space, is superficial.

Therefore, we have proved the conclusion:

c,c;c_= c,cTc, _ c,c; > o _ Pj,_<_P,,,

i.e., more observation implies smaller steady state filtering error.

)
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It is also interesting to apply the above conclusionto finite dimensional

Kalman filtering.
Next, we study the influence of distributed sensingto the valueof final

cost.

Proposition 2 In addition to the assumptions (10) and (Ii), suppose (A, B)

and (A', Q') are exponentially stabiIizable. Then,

rain da(u) - min d(u) = Tr. B'Pc(Pa- PI)PcB < 0
,,O,,d_l(0,oo),n.l _(-,_,)ez._[(O,oo),H.l

(17)

where J(u) and Ja(u), as given in (4), are the quadratic cost functionals

corresponding to the systems with observation operators C, Ca, respectively.

Here we impose the much stronger conditions of exponential stabilizability

of (A,B) and (A*,Q*) as a sufficiency condition such that (A- BB*Pc)is

exponentially stable. And hence

2Pcz = S2(t)Q*QS(t)x dt x e H

which implies Pc is nuclear, where S(t) and So(t) are the Co-semigroups

generated by A and (A - BB*Pc), respectively.

In general, Pc need not be nuclear without the above assumptions. For

example, in the usual notations, let

,) (0)-A 0 ; Q*=B= B

where B : H,_ _ H is Hilbert-Schmidt. Then,

A + A* =O::.'Rc=I

which is not even compact. Obviously, in this particular case, (.A,B) and

(.A*,Q*) are not exponentially stabilizable in view of Gibson's results [6],

because 13 and Q* are compact.

21



Proof." Recall that the minimum cost of (4) is given by(7) and PI and Pc satisfy

(6) and (5), respectively.

Let {e,,} be an orthonormal basis in H. Then the minimal cost can be rewritten

)

J(u-)

Similarly, we have

= Tr.QPsQ" + Tr.CP!P_P!C"

= Tr.P!Q°Q + Tr.PIC*CPIP_
oo

= _,{[Q°Qe,,PIe,]+[PtC'CPjP, e,,e,]}
n-._l

oO

= __,{[PI(PcBB*Pc - A'Pc- PcA)e,,e,]
n=l

+[(AP! + PIA* + Ff')Pce,,,e.]}
¢0

= __,{[SP, BB'P_e.,e.I+[FF'P_e,,e,]}
n.-_l

= Tr.PIPcBB*Pc + Tr.FF'P¢

-" Tr.B*PcPIPeB + Tr.F*PcF

Jd(u*) -- Tr.B'PcPdP_B + Tr.F'P¢F

Therefore, subtraction of the two gives (17). o

The conclusions of the above propositions can be extended to the finite time

horizon LQG problem:

k(t) = Ax(t) + Bu(t) + Fw(t)

y(t) = C_(O + C_(t)

Ez(O)x(O)" = A

O<t<T

(18)

)
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where GG" = I, FG" = O, and B : H_ _ H is Hilbert-Schmidt. The cost

functional is given by

T

J(u) = foTTr.El(Qx(t,w)(Qx(t,w)'ldt + fo Tr'E[u(t'w)u(t'w)*ldt

where Q : H ----, H is again Hilbert-Schmidt.

Let us consider the differential Riccati equation corresponding to the Kalman

filtering

faf(t ) = API(t ) + PI(t)A" + FF* - PI(t)C'CPf(t)

PI(O) = A (19)

and the differential Riccati equation corresponding to the optimal feedback gain

P,(t) = -a'P,(t) - P,(t)A- Q°Q + Pc(t)BB'P,(t)

Pc(T) = 0 (20)

In what follows, we use Pd(') to denote the solution of (19) with C being replaced

by Cd, and Jd(u) is similarly defined. Then we have

Proposition 3 Under the assumptions

CC:_Cd = CC'C

CC* > 0

there, hold

Pd(t)<P](t) for 0<t<T

min Jd(u) - min J(u)
uEL2[(O,T);Hu] uEL2[(O,T);H_]

forTr.B'P¢(t)[P_(t) P1(t)]P_(t)Bdt <_ 0

23
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Proof: First of all, By [1] we know Pt('), Pd(') and Pc(') all exist and are unique.

Let g(t) = P/(T - t) and gd(t) = Pd(T - t), then g(t) satisfies

[((t) = -AK(t) - K(t)A" - FF* + K(t)C*CK(t)

K(T) = A

while Kd(t) satisfies the same equation with C being replaced by Cd.

Consider the following finite horizon LQR problems

_(t) =

=(to) =

J(to;_,x) =

A'x(t) + C'_(t)

z O<to<T

T •
[Ax(T),x(T)] + [ [rf x(t),z(t)] + ][_(t)]12dt

J to

_(t) =

=(to) =

JdCto;,,,x) =

It is well known that [1]

min J(to; fi, x)
_e L_[(O,T),JR"]

min &(to; _, =)
uEL2[(O,T),ff.]

A*x(t) + C_u(t)

z O<to<T

T °
[Ax(T),z(T)] + [ [FF z(t),x(t)] + Ilu(t)ll2dt

J to

= [K(to)z, zl = [Pj(T - to)z,z]

= [Pd(T -- to)x,x]

Then, similarly as in the proof of Proposition 1, by taking

u = CdC'(CC')-_a

and

we can establish

[Pd(T - to)Z, x] = min &(to; u, x)
=_L=|(O,T),H.|

< n_n _Jd(tO; CdC'(CC')-'_,X)
-- _E/fl [(O,T),/_I

= [Pi(T- to)z,x]

(21)

(22)
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For the second half of the conclusion, we can show in a similar manner as in the

proof of Proposition 2, that

min J(u)
uEL2[(O,T),Hu]

= forTr.B*Pc(t)Py(t)Pc(t)B + Tr.F'Pc(t)Fdt + Tr.APc(0)

from which the result follows by subtraction, noticing that Pc(') is independent of

the observation operator C or Ca. Q

Next, let us consider the effect of distributed sensing on active damping of

large flexible space structures. Since we are concerned with the design of stablizing

control law instead of numerical solution of the structure response, we use the

following continuuam model in order to avoid losing the insight of the infinite

dimensional nature of flexible structures,

Y:(t) + "/D(x(t),_,(t)) + Ax(t) = Bu + FN(t) (23)

where A : 29(A) ------+H is self-adjoint, nonnegative, has compact resolvent and

dense domain. We further assume that 0 belongs to p(A), the resolvent

set of A, i.e., there is no rigid body mode.

B : /R'* _ H is linear and bounded.

F : H,, ----4 H is a Hilbert-Schmidet operator.

D(x,:_) is the (generally nonlinear) damping term, such that [O(x,_),_] >_ O.

N(t) represents a white noise in the Hilbert space H,,

Since the damping coefficient -), :> 0 is typically very small in flexible space

structures, we set -), = 0 in the following studies for the sake of simplicity.

As usual, we may define

(01) (0) (0)A= -A 0 ; B= B ; _-= F

25



so that (23) can be rewritten as

dY(t)

= MY(t) + Bu + ._N(t) where Y = (dt

with 79(,4) = 79(A) (9 H and equipped with the energy norm

xi ) (24)

IIYII_= [A'/2x, Atl2x] + [5:, _]

on the Hilbert space 7{E = 79(A 1/2) (9 H.

From practical point view, only finite number of controllers can be present

and they are of saturation type due to limited control forces and moments [10].

Therefore,

112

u = i and lull _ U. i = 1,2,.-.,n

ttn

where Ui are certain positive constants derived from maximum force/moments avail-

able.

The total energy of the flexible structure governed by the continuum model

(23) is defined by

ECt) = 1/211YCt)ll_ = ll2([Az(t),zCt)l + [_(t),_Ct)l)

Since the energy decay rate is given by

dE(t) = [11, B'$(t)] + [FN(t), 5:(t)]
dt

then obviously the optimal feedback control for maximum energy decay rate is given

by

uj(t) =-Uisign[_] j = 1,2,-.-,n
a_
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where

)
b(t) = b2(t). = B'x(t)

b.lt)

Therefore the control law only requires the rate information at the locations of the

controllers b(t) = B*&(t). In other words, the rate measurements made by colocated

sensors

y(t) = B*5:Ct)

are necessary and also sufficient for active damping purpose. More observation than

that made by colocated sensors does not make any difference in terms of energy

decay. Therefore, in this particular case, optical distributed sensing does not bring

any gain.

However, if we take sensor noise into consideration, then the situation wifl be

quite different.

Next, let us consider the case in which the observation of structure deflection

rate is corrupted by additive sensor noise, i.e.

v(t) = C_(t) + GN(t)

where FG* = 0 (observation noise and state noise are independent), and C could

be colocated sensor B* or optical distributed sensor Ca for later comparison.

For simphcity of analysis, let us assume that linear feedback is allowed, which is

reasonable for small deflection magnitude. Then a reasonable choice for stablizing

feedback control would be

= -B" x(O = -B'f,'(t)

Then the closed loop system dynamics becomes

dY(t) _ .AY(t) - BB'_"(t) + .T'N(t)
dt
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-- (.4- _B')y(t) + _B'(y(t) - ?(t)) + _=g(t)

We therefore see that due to filtering error, we thereby introduce a random input

to the system which may excite higher order modes. And in this case, it is easy to

verify that the energy decay rate becomes

dE(t) = -IIB'_(t)IP + IIB'(_(O - _(0)11'dt
+[B'(} - x),B'x] + [FNCt),_(t)] (25)

The second term in (25) represents a positive energy input, which discounts the

active damping provided by the controllers. The third and the fourth terms can

be considered as zero mean disturbance. Therefore, we are facing two options to

further enhance the structure stability:

1. Increase the active damping by putting more controllers and increasing the

force/moment upper bounds, i.e., to increase the stability margin of (.,4-BB')

by changing B. But this option generally results in heavier weight and bigger

cost.

2. Decrease the positive energy input

IlB'(_(t) - &(t))ll 2

which is caused by filtering error, i.e. to decrease P4, the error covariance

operator of _(t) - x(t), by employing optical distributed sensor.

Let

"P = ( P_P3 P2)p4

be the steady state Kalman filtering error covariance operator.

formidable problem to solve the corresponding SSRE

-AP + P.A* + ._'.F" - T'C*CT' = 0 (26)

It is generally a
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to find 7_.

Next, a very wild attempt is made to find an "approximate" solution of (26).

First of all, since we are interested in a self-adjoint solution, it is necessary to

find the expression of P" with respect to the 7"/E inner product. It is easy to verify

that

"P'= P;A P;

Then 7:' is self-adjolnt if and only if Pi, J = 1, 2, 3, 4 satisfy the following equations

AP1 = (AP1)" (27)

P3 = (AP2) ° (28)

P4 = P_ (29)

As above, suppose only rate measurement is made, i.e. C = (0, C), then direct

computation using (26) gives

P2+ P; - P_C'cP; = o

P4- P1 - P_c'cP4 = o

AP2 + P_A - FF ° + P4C'CP4 = 0

(30)

(31)

(32)

Therefore, to solve (26) for a self-adjoint solution is equivalent to solving equa-

tions (27)- (32). For this purpose, we first eliminate P1 and P2 from (27)- (32) by

noticing

P2 = A -'P_ (33)

PI - P4- A-_P_C*CP4 (34)

from (28) and (3I).

Left- and right-multiplication of A to (30) gives

AP3 + P_A - P_C'CP3 = 0 (35)
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And (32) can be rewritten as

P3 + P_ - FF" + P4C'CP4 = 0

Substituting (34) into (27) gives

AP4 + P4C'CP3 = P4A + P_C'CP4

(36)

(37)

Therefore, the problem becomes solving/'3 and /'4 from (35) - (37) and (29).

Once/'3 and P4 are found, PI and/'2 are immediately given by (33) and (34).

Now we attempt to find an "approximate" solution of the form P3 = 0, in which

case, £'2 = 0 and P1 = P4.

By the assumption on A, we know there is a sequence of normalized modes ¢,'s

and corresponding frequencies w,'s such that

A¢, = w_¢, n = 1,2,...

2
with limn-.oo w n = oo and { 4,, n = 1, 2,-.- } being an orthonormal basis in H.

Since P3 = 0, (35) is trivially satisfied. We only need to determine P4 from (36)

and (37), which become

FF" = P4C'CP4 (38)

AP4 = PaA (39)

and(29).
If we assume w_'s are distinct, then it is easy to show that

AP4 -" P4A and P4 - P;

if and only if there is a sequence of nonnegative numbers { a,, n = 1,2,... } such

that

P,,¢,, = a,¢, n = 1,2,.-.
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Now a.'s can be determined from (38), i.e.

[FF*¢., ¢_,] = [P4C'CP4¢., ¢,,] = a_[IC¢.]] 2

which immediately gives

IIF'¢.ll
n = 1, 2,...a.= IIc¢.11

Therefore, we have found an "approximate" solution 7_ of (26) given by

where P4 is a self-adjoint, nonegative operator defined by

P4¢. = 11F'¢,11¢, n = 1,2,...
IIc¢.11

with domain

(40)

co IIF'¢.11¥%
29(P4) = {z E HI E( _, _ , 4-12 < oo }

rr=l

This is an =approximate" solution in the sense that it satisfies only equations

(35), (37) and (29), but not (36). In fact, if we consider the left hand side of (36) as

an infinite dimensional matrix, then the above solution only makes all the diagonal

elements zero, while the off diagonal elements are not necessarily zero.

It is easy to see that a sufficient condition for (40) to be an exact solution of

(26) is

[FF'¢.,¢,_] = [P4C'CP4¢.,¢,_]=a.a._[C'C¢.,¢,_] 'v'n C m

= [c/,..,c¢...1 w # m
IIC¢..11IIC¢_11

or, equivalently,

[F'¢., F'¢._]

IIF'¢,-,II IIF'¢.,II

which is a very strong requirement.
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4 Conclusions

In summary, optical distributed sensing brings gain in the situation where Kalman

filtering is necessary for state estimation. In this case, both the transient and

the stationary Kalman filtering error cowariance become smaller. Due to smaller

filtering error, the same control law results in smaller cost in LQG problem. These

conclusion% of course, also apply to finite dimensional Kalman filtering and LQG

problems as special cases.

By considering the stabilization problem of flexible space structures, we realize

that it is important to use distributed sensors in order to reduce the positive energy

input caused by filtering error.
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